/**
* jQuery Plugin: Sticky Tabs
*
* @author Aidan Lister
// Set the correct tab when the page loads showStuffFromHash(context);
// Set the correct tab when a user uses their back/forward button $(window).on('hashchange', function() { showStuffFromHash(context); });
// Change the URL when tabs are clicked $('a', context).on('click', function(e) { history.pushState(null, null, this.href); showStuffFromHash(context); });
return this; }; }(jQuery));
window.buildTabsets = function(tocID) {
// build a tabset from a section div with the .tabset class function buildTabset(tabset) {
// check for fade and pills options var fade = tabset.hasClass("tabset-fade"); var pills = tabset.hasClass("tabset-pills"); var navClass = pills ? "nav-pills" : "nav-tabs";
// determine the heading level of the tabset and tabs var match = tabset.attr('class').match(/level(\d) /); if (match === null) return; var tabsetLevel = Number(match[1]); var tabLevel = tabsetLevel + 1;
// find all subheadings immediately below var tabs = tabset.find("div.section.level" + tabLevel); if (!tabs.length) return;
// create tablist and tab-content elements var tabList = $('
'); $(tabs[0]).before(tabList); var tabContent = $('
'); $(tabs[0]).before(tabContent);
// build the tabset var activeTab = 0; tabs.each(function(i) {
// get the tab div var tab = $(tabs[i]);
// get the id then sanitize it for use with bootstrap tabs var id = tab.attr('id');
// see if this is marked as the active tab if (tab.hasClass('active')) activeTab = i;
// remove any table of contents entries associated with // this ID (since we'll be removing the heading element) $("div#" + tocID + " li a[href='#" + id + "']").parent().remove();
// sanitize the id for use with bootstrap tabs id = id.replace(/[.\/?&!#<>]/g, '').replace(/\s/g, '_'); tab.attr('id', id);
// get the heading element within it, grab it's text, then remove it var heading = tab.find('h' + tabLevel + ':first'); var headingText = heading.html(); heading.remove();
// build and append the tab list item var a = $('' + headingText + ''); a.attr('href', '#' + id); a.attr('aria-controls', id); var li = $('
'); li.append(a); tabList.append(li);
// set it's attributes tab.attr('role', 'tabpanel'); tab.addClass('tab-pane'); tab.addClass('tabbed-pane'); if (fade) tab.addClass('fade');
// move it into the tab content div tab.detach().appendTo(tabContent); });
// set active tab $(tabList.children('li')[activeTab]).addClass('active'); var active = $(tabContent.children('div.section')[activeTab]); active.addClass('active'); if (fade) active.addClass('in');
if (tabset.hasClass("tabset-sticky")) tabset.rmarkdownStickyTabs(); }
// convert section divs with the .tabset class to tabsets var tabsets = $("div.section.tabset"); tabsets.each(function(i) { buildTabset($(tabsets[i])); }); };
Top ML and AI resources for bioinformatics
In this blogpost, I share some of the top ML and AI resources for bioinformatics. If you are keen to learn about machine learning and AI, this is the post for you!
So if you are ready… let’s dive in!
Here are some resources to get you started in your ML and AI journey! If you’ve completed any of these courses and would like to share your experience, leave me a comment in the comments section below!
Foundational ML Courses
- Machine Learning Specialization by Andrew Ng (Coursera) – The best introduction to ML fundamentals. Start here if you’re new to machine learning.
- Fast.ai Practical Deep Learning for Coders – Top-down approach to learning deep learning. Free, practical, and code-first.
- Stanford CS229: Machine Learning – Comprehensive course materials and lecture notes available free online.
- MIT 6.S191: Introduction to Deep Learning – Excellent lectures covering modern deep learning with accessible explanations.
Biology-Specific ML Resources
- Deep Learning for the Life Sciences by Ramsundar et al. – Specifically designed for applying deep learning to biological problems. Code examples included.
- Machine Learning for Bioinformatics (UW-Madison) – Course materials covering ML applications in genomics and proteomics.
- Molecular Machine Learning – Interactive textbook for applying ML to molecular and chemical data.
- ML for Healthcare (MIT) – Focuses on clinical and health data applications.
Books and Textbooks
- Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow by Aurélien Géron – Practical ML implementation guide with clear examples.
- Pattern Recognition and Machine Learning by Christopher Bishop – Comprehensive mathematical treatment. Free PDF available.
- Deep Learning by Goodfellow, Bengio, and Courville – The definitive deep learning textbook. Free online.
- An Introduction to Statistical Learning (ISLR) – Essential bridge between statistics and ML with R code.
Python Libraries and Tools
- Scikit-learn Documentation – The go-to library for classical ML in Python. Excellent tutorials and examples.
- PyTorch Tutorials – Modern deep learning framework with great documentation.
- TensorFlow and Keras Guides – Comprehensive guides for building neural networks.
- Biopython ML Tools – Python tools specifically for computational biology.
Specialized Topics
- StatQuest Neural Networks Playlist – Josh Starmer’s clear explanations of neural networks and deep learning concepts.
- 3Blue1Brown Neural Networks Series – Beautiful visual intuition for how neural networks work.
- Genomic Deep Learning – Tools and tutorials for applying deep learning to genomic sequences.
- AlphaFold Resources – Learn from DeepMind’s protein structure prediction breakthrough.
Practical Notebooks and Tutorials
- Google Colab ML Tutorials – Free GPU access and pre-made notebooks for ML experimentation.
- Kaggle Learn – Interactive ML courses with hands-on coding exercises.
- Papers with Code – Research papers with implementation code, great for staying current.
- Hugging Face Course – Modern NLP and transformer models, applicable to biological sequences.
Communities and Updates
- r/bioinformatics – Active community discussing ML applications in biology.
- Towards Data Science – Medium publication with practical ML tutorials and case studies.
- distill.pub – Beautiful, interactive explanations of ML concepts.
What did you think of these ML and AI resources and tools?
Are there any other resources you would like to see here?
If you have recommendations on more bioinformatic tools for beginners, intermediate or advance levels, leave a comment in the comments section below so I can add it to the list:)
Additional resources
You might be interested in…
- Top ML and AI resources
- Useful resources for bioinformatics
- Top resources to learn biostatistics
- Learn to code as a biologist
Squidtastic! You made it till the end! Hope you found this post useful.
If you have any questions, or if there are any more topics you would like to see here, leave me a comment down below.
Otherwise, have a very nice day and… see you in the next one!
Before you go, you might want to check:
// add bootstrap table styles to pandoc tables function bootstrapStylePandocTables() { $('tr.odd').parent('tbody').parent('table').addClass('table table-condensed'); } $(document).ready(function () { bootstrapStylePandocTables(); });